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ABSTRACT 
Most AI researchers would, I believe, agree that truly intelligent machines (i.e., 
machines on a par with humans) will require at least four orders of magnitude 
more power and memory than are available on any machine today [20,32]. There 
is now widespread agreement in the supercomputing community that by the year 
2000 all supercomputers (defined as the most powerful machines available at 
a given time) will be massively parallel [10]. Yet relatively little thought has 
been given in AI as to how to utilize such machines. With few exceptions, AI's 
attention has been limited to workstations, minicomputers and PCs. Today's 
massively parallel machines present AI with a golden opportunity to make an 
impact, especially in the world of commercial applications. The most striking 
near-term opportunity is in the marriage of research on very large databases with 
case-based and memory-based AI. Moreover, such applications are steps on a path 
that can lead eventually to a class of truly intelligent systems. 

1. Economic inevitability of massive parallelism. The perfor
mance of serial computers is limited by the "von Neumann bottleneck", (the 
serial path used to move instructions and data between memory and the 
CPU) and by I/O limitations. Over the next ten years the use of fast tech
nologies (ECL, GaAs, etc.) and further miniaturization might gain a per
fonnance faitor of five, cleverer caching and instruction prefetch a factor of 
two, and the use of multiple functional units yet another factor offour, bring
ing the fastest uniprocessors (now at less than one GFlops) to perhaps 40 
GFlops. Compiler technologies could allow as many as 16 such processors to 
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be ganged together, yielding perhaps as much as 640 GFlops in total. The 
price would be high: very dense chips of exotic materials packed close to
gether present daunting cooling and packaging problems. An extrapolation 
of current trends (supercomputers cost about $100,000/MFlops in 1977, and 
about $8000/MFlops in 1990) suggests that such a machine would cost about 
$500 million in the year 2000 (about $800/MFlops). 

In contrast, massively parallel machines (e.g., the Connection Machine{R) 
CM-2) use PC/workstation technologies, and boast per-computational-unit 
costs similar to those of these small machines: on the order of $1000/MFlops 
in 1990. The largest massively parallel machines already exceed the power of 
serial supercomputers: the 65,536 processor CM-2 is reali~ically capable of 
speeds on the order of 5 GFlops (with a 28 GFlops peak). DARPA has tar
geted a massively parallel TeraOps (one trillion operations/second) machine 
by 1995, and the cost is expected to be less than $100 million ($100/MFlops). 
By the year 2000 it should be possible to build massively parallel TeraOps 
machines for $10 million ($10/MFlops .,- two orders of magnitude cheaper 
than could be done with serial technologies). 

2. A brief history of massively parallel AI. The Connection Ma
chine system was originally designed to handle AI tasks, such as NETL-like 
marker-passing over semantic networks, and low-level computer vision [9,11]. 
"'LISP, an extension of COMMONLISP, was the first high-level language for the 
CM and its first front-end computer was a Symbolics 3600. A number of the 
early CMs were purchased by AI labs following its introduction in 1986, and 
some early work was done along the lines envisioned by Hillis, for example, 
CIS, a marker-passing parallel expert system, with one (instantiated) rule 
per processor [3], and a system for computing stereo disparity from a pair 
of images, using the Marr-Poggio method [14,6]. (See [35] for a summary 
of several early AI projects.) However, it is clear in retrospect that there 
was not much of an AI market for $50,000 Lisp machines, let alone for $1 
million (and up) Connection Machine systems performing these sorts of ap
plications. There is still not a market for very large expert systems, in part 
because it is difficult to build a very large expert systems (Blelloch's CIS 
system contained 100,000 artificially generated rules on a CM-I with about 
8 MBytes of memory; a current CM-2 with 8 GBytes of memory could store 
100 million rules!). Likewise, there was not (and still is not) a market for 
high volume low-level image processing (although the new Landsats may 
eventually create one). 

Fortunately for Thinking Machines, the CM-2, with its floating point 
option (using up to 2000 Weitek chips), proved to be an excellent match 
for a wide range of scientific problems: finite element models, operations on 
large matrices, fluid flow and aerodynamics models, nobody problems (e.g., 
galactic collisions), interacti¥e scientific visualization, models using cellular 
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automata, seismic data processing, signal processing, etc. Most of Thinking 
Machines' sales growth, 50% per year over the last few years, has been fueled 
by sales for these types of applications. 

But the AI dream is still valid. Recent research using novel AI paradigms 
on real customer problems and real customer databases have identified some 
great opportunities. 

3. The large-scale commercial AI opportunity. Data is being gen
erated faster than it can be digested. Very large (> 100 GByte) databases 
are becoming common. Such databases contain valuable information on 
customer credit and buying behaviour, many forms of text: public text, 
including books, newspapers and news wires, financial journals, technical 
industry publications, scientific journals and annual reports; and private 
text, such as studies, memos, manuals, proposals, documentation; visually 
oriented materials, including maps, schematics, plans and blueprints, as well 
as fast-expanding video archives; and much more. 

Until recently mainframe computers, with their extensive existing soft
ware libraries, have been the only choice for those who own and/or wish to 
mine such databases. But mainframes are pitifully slow and at the same 
time very expensive, and the software available for database tasks has been 
quite primitive because answering even primitive questions takes too long. 
Massively parallel machines offer large storage capacityl and high I/O rates, 
using parallel disk arrays and multiple wide-word I/O channels. The to
tal CM-2 I/O capacity is currently 200 MBytes/second, limited by the disk 
rates.2 This means that an entire 100 GByte database can be streamed into 
the CM-2 in 500 seconds. We estimate based on preliminary but realistic 
tests, that we can achieve a speedup of at least an order of magnitude over 
identical data selection operations on a mainframe on a CM-2 costing only 
a fraction of the price [Stanfill, forthcoming]. 

This kind of performance opens the possibility for changing the fun
damental nature of an organization's use of a database, from a weekly to a 
daily batch run, or from batch to interactive, and also operis the opportunity 
for applying dramatically more complex and intelligent processing to each 
database item than can otherwise be imagined today. In the next several 
sections, I outline the algorithms and performance for several commercially 
important applications. 

4. Text-based intelligent systems. For most of its history, AI has 
been concerned with "toy problems." Scaling up presents difficulties: At the-] 

.; 

1 A single current Connection Machine CM-2 can be equipped with up to eight I/O chan
nels, each of which can have 16 drops, allowing 15 Data Vault disk arrays of up to 80 
GBytes each, for a total storage capacity of 8 x 15 x 80 GBytes = 9,600 GBytes! 
2 The CM-2 itself can handle more than 400 MBytes/second. 
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two extremes of the spectrum, one can hand-code (as in CYC [14]), or one 
can use methods to automatically build NLP systems. To date there have 
been very few practical applications for natural language processing, and this 
fact has dampened the enthusiasm of funding agencies and companies that 
support research in this area Fortunately, there are signs that this situation 
can be improved by strategically merging AI/NLP and Information Retrieval 
(IR) technologies. This offers novel opportunities both for learning research 
and for building systems that have immediate practical value. 

A series of experiments and discoveries led researchers at Thinking Ma
chines, most notably Craig Stanfill and Brewster Kahle, t'b devise a document 
retrieval system that works in parallel on the Connection Machine [28,27]. 
The resulting system, marketed as DowQuest{R) by Dow Jones has been 
in commercial use since January 1989. DowQuest provides a high quality 
search through a clever interface that can be used effectively by a computer
naive person after only about 5 minutes of training. The basic idea is this: 
A database of documents (e.g., news articles, abstracts, books, etc.) is dis
tributed to each of the 65 536 processors of a CM-2 (if documents are 2K 
bytes long, each processor equipped with large memory can hold about 256 
compressed documents or 16 million total!). The user types a few words (a 
question, description, or a list of terms will do) and a carriage return; the 
terms are broadcast to all the processors in parallel along with a numerical 
"weight" indicating the importance of each term.3 The search portion of 
this operation is analogous to the following situation: imagine a stadium 
with 65 536 people, each with one document and a pocket calculator; an 
announcer reads each search term followed by a number (representing the 
importance of a term (the rarer a term, the higher its weight) and each 
person whose document contains the term adds the score to the calcula
tor. After all terms are read, the persons with the highest scored documents 
present themselves. (This would be hard in the stadium analogy). (To match 
the real situation, we would actually need either 16 million people, or 256 
documents and 256 calculators per person.) 

The headlines for the documents with the highest total scores are then 
sent to the user. The user can view the text of each of these documents 
by clicking· a mouse while pointing to the headline. When a user sees a 
document (or paragraph of a document) that answers his/her request, the 
user can mark the document "good" by pointing and clicking the mouse. The 
system collects all the terms from all the documents marked "good" along 
with all the initial words the user typed, and repeats the search process 
described above, but now using all these terms. Each search requires less 
than a second, even on databases up to 10 GBytes. This method, called 

3 Term weights are assigned automatically by a program that pre-processes the text and 
updates the database. 'ihtf'number of occunences of each term is saved, and weights 
computed proporti~uano the negative log of the probability of occunences of each term. 
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"relevance feedback" [18], generally produces a substantially better search 
than is possible with Boolean search systems [2]. 

DowQuest: DowQuest uses the method above, with enough memory so 
that a 1 GByte database is permanently stored. The 16 documents with the 
best scores are returned to the user, who can look at the full text (stored on 
a disk on the front end server) and can mark any document (or paragraph 
of a document) as "relevant". DowQuest has about six months worth of 
articles from nearly 300 different sources: Wall Street Journal, Washington 
Post, Barrons, the business sections of about 100 U.S. newspapers, Fortune, 
Forbes, and other magazines, and a number oftrade publications (e.g., Byte). 
Ninety-nine percent of all searches take under 1.5 sec~nds, including front 
end time. CM time for 100 terms is about 170 ms. The system also parses 
input text, creates a new surrogate database, and updates the database while 
the system is operating on-line. 

We have recently outlined algorithms that allow interactive access to 
1 TeraByte (1 000 000 MBytes) of text [29]. For reference, the Library of 
Congress probably contains on the order of 40 Terabytes of text. 

5. New text opportunities. This system suggests interesting oppor
tunities for exploiting natural language processing results: 

Adding NLP: It is highly desirable to add natural language pre- and post
processing to the existing system, to improve its performance, and to extend 
its capabilities. For example, we are building recognizers that can find, label, 
and store lists of terms that refer to company names, geographic locations, 
names of persons, etc. Ultimately, this will help users to ask and obtain an
swers to questions that would be very difficult to phrase as Boolean queries. 
For example, "Earnings reports for New England utility companies" would 
expand to "Earnings reports for Maine, New Hampshire, Vermont, Mas
sachusetts, Connecticut, Rhode Island, utilities, power companies, electric 
companies, power, light ...". In addition, natural language processing sys
tems will allow us to post-process retrieved documents, to filter out irrel
evant articles, and thus improve the performance of the system from the 
user's point of view. 

Adaptive Systems: More intelligent processing could be applied to the users' 
queries; the system could keep track of user patterns and interests, and adapt 
itself to be easier to use or even to volunteer information it thinks the user 
is interested in. 

WAIS (Wide Area Information Server): We are building a version of this 
system to seamlessly search an organization's local data as well as remote 
(e.g., Dow Jones) databases. This system will allow organizations to locate 
and reuse proposals, reports and studies, find (by matching biographies) 
appropriate people jar' various tasks, and generally allow each person to .. ... 
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locate any text, personal, corporate or public, with a single search. 

Hypertext: The same methods that let us locate relevant articles can allow 
us to automatically build hypertext systems for test distributed on CD
ROMs. These could be generated much more quickly and inexpensively 
than is possible with hand-building. 

Automatic Generation of NL Systems: The retrieval system itself can be 
adapted to extract phrase, sentence and paragraph "templates" or patterns 
in order to aid the building of recognizers for particular topics or for types 
of stories. Such processing can provide empirical data. on language usage 
that would be very difficult to find or invent any other way, leading to 
"dictionaries" of muiti-word and multi-sentence language patterns and to 
FRUMP-like systems [5] with broad subject coverage. 

Other related research, using dictionaries or thesauruses, has become 
popular in recent years. Some striking successes have been achieved by Ken 
Church and coworkers at AT&T Bell Laboratories [4,7] using the augmented 
"Brown Corpus" [13]. The "Brown Corpus" consists of one million words of 
text, chosen to represent a wide range of text types and styles (newspaper 
and magazine articles, books on history, economics, etc.). It was "aug
mented" by Kucera and Francis by assigning each word in the corpus to one 
of about 450 classes, covering standard grammatical categories (noun, verb, 
adjective) but also including substantially finer distinctions (e.g., noun-agent 
of sentence; verb-complements of particular types). Church collected statis
tics on the probabilities that various words would follow particular other 
word (or category) combinations. This system has been used to judge the 
most likely categories for words in novel text taken from-news-wire sources. 
Success rates for Church's system are in the range of 98-99%, much higher 
than for the best syntactic parsers (in the range of 33% [19]). 

All these current lines of research emphasize breadth of coverage rather 
than depth of coverage and are thus complimentary to the goals of tra
ditional AI-NL processing research. All present attractive alternatives to 
hand-coding [14]. And all can be used to accelerate the research into deep 
processing. The most attractive part of this effort is that our systems are 
immediately useful, and thus can pay for the research on their own augmen
tation. I believe these general approaches will have great importance in the 
ultimate story of the achieving of truly intelligent systems. 

6. Memory-based reasoning. Methods broadly analogous to the 
text-search algorithms can be used to build "memory-based reasoning" sys
tems to aid in decision-making. These systems perform like artificial neural 
nets [17,34] or ID3-like learning systems [16]. In memory-based reasoning 
(MBR) a parallel machine is loaded with a database of the sort that can be 
used as a training 
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classifications, or desired outputs for each situation. When a new problem 
is encountered, the MBR system compares it to all the known prior cases, 
and uses the most similar case (or majority vote of several similar cases) to 
classify the new case. The key to successful MBR operation is the selection 
of a good similarity metric for matching new problems with known cases 
[30]. 

6.1. Advantages of MBR. MBR provides expert system-like 
behaviour, but does not require extensive hand-coding. MBR provides "ex
planations", the precedents most similar to the current problem case, in 
order to justify its actions. MBR provides high p~rformance, superior to 
artificial neural nets [37] and superior to expert systems (see below). MBR 
is robust when noise is added to its database; in one experiment [31] on the 
NETtalk database [22], performance fell off only about 10% when 90% of the 
database was replaced with noise. MBR is simple to update: new cases can 
be added and old, obsolete ones removed, and performance will immediately 
track the changes. This is in sharp contrast to artificial neural nets, which 
must be totally retained if the world changes, and expert systems, which are 
notoriously difficult to modify. 

There are some disadvantages: MBR generally requires a data parallel 
computer, which will probably be more expensive than a system used to 
deliver an expert system or neural net application (though inexpensive data 
parallel systems without extensive interprocessor communication might suf
fice); and MBR systems do not operate as rapidly as a trained neural net, 
though they would generally be much faster than expert systems. 

6.2. Classifying census data. We have recently demonstrated that 
an MBR system can perform impressively on a task to generate one of about 
241 industry codes and one of about 509 occupation codes for individual 
respondents, by comparing their answers (expressed as free text and multiple 
choice selections) with 132 000 cases that have already been classified by 
hand. Early results have indicated that by keeping categories where the 
system has been proven to be correct at least 90% of the time for industry 
codes and at least 86% of the time for occupation codes, MBR can correctly 
process at least 70% of the database for industry codes and about 56% of 
the database for occupation codes. For comparison, an expert system that 
required more than two years to develop, achieves only 57% and 37% of the 
database respectively on these two tasks [25]; the MBR system took less than 
a month to build. For this application, the similarity metric is generated, 
using statistical operations, on the fiy. 

6.3. Other applications. Similar methods have been used to build 
MBR systems fo:s,optical character recognition, based on a large number of .. ... 
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examples of handprinted numerals [26]; for medical diagnosis [30]; for con
trolling a robot to produce near optimal trajectories [1]; for (two-dimensional) 
object recognition [32]; for automatically generating index terms for news 
articles or routing articles to appropriate recipients [24]. Recent work [38] 
on protein structure prediction has shown that a system that combines the 
results of MBR with neural nets and statistical information dramatically 
outperforms any previous method. This has relevance to the human genome 
project, another good target area for AI and IR. Many other applications 
are clearly possible. 

7. Genetically-inspired methods. Market research is a "forest for 
the trees" problem. One needs to generate insights into the repetitive pref
erence patterns among millions of customers and distill market segment def
initions in order to offer consumers the products they are most likely to 
want. We have developed genetically-inspired algorithms [23] that automat
ically find trends and categories without being told in advance what the 
patterns are. 

One specific problem that has been addressed by these methods is the 
following: Suppose that we know purchasing behaviour, demographic and 
credit information for several millions (or tens of millions of) people, and 
that we wish to mail catalogs containing items selected from the offerings of 
hundreds of vendors, such that the greatest possible return (dollar amounts 
ordered minus the cost of the mailings) is maximized. Clearly, the larger the 
catalogs, the more the cost for postage and the greater the chance each will 
be thrown away; the smaller and more tailored the catalogs, the better the 
return, but the more expensive it will be to print the catalogs and stuff the 
appropriate envelopes. 

In an example run, we started with about 8000 customers on a small 
CM-2, and first calculated the ideal catalog of five items for each customer. 
(This step requires a model of consumer behaviour.) Each list of five items 
is analogous to a piece of genetic material. We also computed an expected 
return (negative) for sending 8000 tailored catalogs. We then used the com· 
munications system of the CM-2 to randomly pair up consumers in parallel. 
For each pair, we then calculated the change in expected return if consumer 
1 took consumer 2's catalog, and vice-versa. Both consumers were grouped 
into one or the other of the catalogs with a probability based on the change 
in the expected returns. The scoring scheme also makes it easier to merge a 
consumer who shares a catalog with a small number of others into a larger 
group than to pull a customer out of a. large group and into a smaller one. 
Every few steps, random point mutations to the catalog's customers were 
probabilistically introduced, on the theory that the best catalogs may not 
have been present for an~of,the original consumers. The process continued 
until the maximum e~led return point was found (in this case, 30 tailored 
catalogs, and sets of consumers who should receive ea.ch). 
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The overa.ll solution to this problem required on the order of two hours 
on a 4K processor CM-2j the overall potential search space of solutions is on 
the order of 1087! 

8. A different route to truly intelligent systems. So what does 
all this have to do with cognition? I want to argue that the basic associa
tive memory operation of selecting relevant precedents in any situation is 
the essence of what intelligent entities do. ("Precedents" may be actions, 
options, remindings, etc.) If only a single precedent is found (e.g., when one 
is operating in a familiar environment on familiar tasks), then there is little 
involved in acting intelligently. Only when two or more incompatible prece
dents are found, or when the task space is unfamiliar, is reasoning (in the 
ordinary sense) required. Combinatorially explosive search can be avoided, 
since in any given situation only a small number of "operations" (actions) are 
plausible, making branching factors manageable. Planning can be supported 
by associative memory retrieval of precedents of the form: (hypothetical sit
uation + goal + operator -+ new situation] and/or [hypothetical situation 
-+ goal]. Even creativity or analogical problem solving might be covered (if 
the best precedents match structurally but are not literal matches). 

I am not imagining that a monolithic flat database could model mem
ory. First, generalizations over memory and other structures need to be 
matched in addition to episodic items. (See [12,8] for descriptions of mas
sively parallel frame systems.) Second, there ought to be situation-specific 
priming that changes the overall searchable space (or relevance judgements) 
for precedents. Overall, I am persuaded by society of mind arguments and 
examples, and feel that the structure of memory also contains many agents 
responsible for recognizing special situations and either priming or censoring 
memories. 

9. Summary. If AI is to succeed, it is important to find ways to justify 
ongoing research costs, to substitute profits for promises. Commercial mas
sively parallel applications already offer opportunities for changing the ways 
business is done, because existing limits on database size and speed of access 
can be transcended. Moreover, the excess processing capacity of massively 
parallel systems makes it possible to add greater intelligence to applications. 
And there are great potential payoffs for this kind of AI: even modest ideas, if 
they are sufficiently general to apply to an entire large database, can produce 
results that seem wonderfully magical. Most successes of this sort to date 
have used data parallel methods, especially memory-based reasoning. MBR 
applications can often be generated automatically from existing databases. 
MBR and case-based reasoning may alSQ form the basis of new paradigms 
for cognition that can scale to human levels as massively parallel machines 
develop. -'.;0. .:, 
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